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Considering the fact that the distances between coupled oscillators may delay the receiving of signals, we
study here the influence of uniformly distributed delays in an array of coupled pendulums instead of studying
the influence of the coupling strength. We find that with an increase of the range of distributed delays, the
chaotic behaviors of the coupled arrays may be controlled and different synchronized patterns can be induced.
An analytic solution is given to confirm the numerical results. This finding may provide further insight into
information processing in neurons.
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I. INTRODUCTION

The controlling chaos and synchronization has been well
studied during the last two decades �1,2�, and a variety of
approaches have been presented to implement this task, rang-
ing from dissipative systems �3–9� to conservative systems
�10�. Most are focused on the influence of the coupling
strength. It is found that chaos can be controlled and the
trajectories of chaotic systems can be stabilized to some spe-
cific unstable periodic orbits. Among these researches, one of
the interesting findings is that, contrary to the function of
disorder as destroying spatial and temporal regularity, disor-
der can be also used to control chaos in an array of Joseph-
son junctions �11–13�. For example, the chaotic dynamics of
an array of pendulums can be controlled by a small amount
of disorder to the length or by some impurities.

Recently, this problem has been restudied and it is found
that instead of controlling chaos by increasing the coupling
strength, the chaotic dynamics of an array of pendulums can
be even controlled only by randomizing the initial phases of
the external forces at the individual oscillators �14,15�. The
array remains chaotic if all the initial phases are taken as the
same constant. However, when the initial phases are uni-
formly distributed in the interval �−k� , +k��, the oscilla-
tions of the array will become regular for sufficiently large k.
The mechanism is revealed by an effective random equation
of motion governing the dynamics of the soliton center of
mass �15�.

Considering the fact that in most realistic physical and
biological systems the interaction signal is transported
through media such as sound, etc., we observe that the signal
will take some time to pass through a finite distance, because
of limited speed, to arrive at its destination and thus induce a
time-delay in receiving the signal �16,17�. For example, in
biological neural networks, the transmission delay is a sum
of axonal, synaptic, and dendritic delays. Actually, the axon
conduction velocities are proportional to its size and there is
a distribution of axon diameters in the nervous system �18�.
Moreover, it is reported that axons can generate time delays
as large as 300 ms �19,20�. It has been also shown that neural
connections are full of variable loops, such that the propaga-
tion time through loops can result in a large time delay �21�.
This feature of delay has been widely studied in coupled
oscillators, neurons �22,23�, food webs, etc., and various

phenomena have been uncovered, such as wave formation
�24�, amplitude death �25�, synchronization �26–30�, eco-
logical stability �31–33�, etc.

In this paper, we study an array of coupled pendulums
with randomly distributed distances between any two neigh-
bors and consider the effect of different distances as distrib-
uted time delays in the coupling interactions. Our principal
results are as follows: �a� The distributed time delays or “dis-
order” can also stabilize the chaotic dynamics of the coupled
system and thus have the same function with the distributed
random phases �14,15�. �b� Different periodic patterns may
show up with an increase of the range of distributed delays.
�c� An analytic solution is given to confirm the numerical
results.

The paper is organized as follows. In Sec. II, we present
our model and show its numerical simulations. Then, in Sec.
III, we give the model’s analytic solution. Finally, discus-
sions and conclusions are given in Sec. IV.

II. DISTRIBUTED TIME-DELAY MODEL

We here consider a coupled chain of forced, damped, non-
linear pendulums, which is sometimes called a driven
Frenkel-Kontorova chain or Josephson-junction chain. The
coupling is considered to be diffusive and only allowed be-
tween neighbors. We introduce an independent time delay to
each coupling line, which is taken from a uniformly distrib-
uted random number. The equations can be described as

ml2�̈n + ��̇n = − mgl sin �n + �� + � sin��t + �n�

+ s��n+1�t − �n+1� + �n−1�t − �n−1�

− 2�n�t − �n�� ,

n = 1,2, . . . ,N , �1�

where the parameters are taken as follows: the mass of the
oscillator is m=1, the length l=1, the acceleration due to
gravity g=1, the damping �=0.75, the dc torque ��
=0.7155, the ac torque �=0.4, the angular frequency �
=0.25, the coupling strength s=0.5, and the initial phase
�n=0. The time delay �n is a uniformly distributed random
number in �0,kh� with h=0.001 and kh denoting the range of
distributed delays. And periodic boundary conditions are
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used—i.e., �0=�N and �N+1=�1. In the following numerical
simulations, we fix N=50 unless specified otherwise.

For understanding how the range kh of distributed delays
influences the global spatiotemporal behavior of Eq. �1�, we
consider the average velocity

��jT� =
1

N
�
n=1

N

�̇n�jT� �2�

at times that are integer multiples of the forcing period T
=2� /�. We find that the oscillations become periodic pat-
terns in the form of 1T ,2T ,3T , . . . attractors for sufficiently
large k. Figure 1 shows how � changes with k for N=50,
where � is measured at t=60T ,61T , . . . ,80T for each k. It is
easy to see that the system becomes 2T attractors when k is
larger than 13 and a 1T attractor when k is larger than 30.

How do the collective behaviors in Fig. 1 show up? For
understanding its mechanism, we investigate the evolution of
each individual oscillator and find that an increase of the
range of distributed delays will make its behavior stabilize
gradually. With an increase of k, the stabilized behavior will
change from chaotic to periodic. When k is over some criti-
cal value, the competition of the distributed asymmetric cou-
plings causes all oscillators to stay in a stationary state—i.e.,
periodic patterns. Figure 2 shows four typical evolutions of
k=0, 15, 25, and 40, respectively. Obviously, Fig. 2�a� is a
chaotic attractor, Figs. 2�b� and 2�c� are two different 2T
attractors with alternative long and short segments, and Fig.
2�d� is a 1T attractor. Their averages give just the values
observed in Fig. 1.

The difference between the patterns of 2T attractors can
be seen more clearly in Fig. 3 where the velocities are un-
folded by the node positions. Figures 3�a� and 3�b� represent
the two distinct distributions of velocity on the Poincaré sec-
tion t= jT for k=15 and Figs. 3�c� and 3�d� the distributions
of velocity for k=25. It is easy to see that there is a soliton-
like wave in the array and the shapes of the solitons are
different for the cases k=15 and 25, indicating that they be-
long to different 2T attractors.

Figures 1 and 2 are for a fixed set of time delays. For a
given k, there are numerous sets of time delays satisfying the

uniform distribution. If the stabilized pattern or attractor de-
pends on the chosen set of time delays, we may observe a
variety of patterns for the same k. However, our numerical
simulations show that the patterns are somehow robust to the
sets of time delays and the degree of robust depends on k.
For example, we may observe a few kinds of patterns for a
medium k and only one pattern for large k. For illustrating
the weights of different patterns at a given k, we calculate the
possibility for the system to reach a 1T ,2T ,4T and chaotic
attractors after t=60T. Figure 4 shows how the possibility P
changes with the disorder parameter k. It is easy to see that
the dynamics of the oscillators is mainly remained chaotic
when k is less than 13, but dominated by 1T pattern when k
is over 30. In between these two regimes, it is possible for
other periodic patterns to show up.

With an increase of k, except for observing the transition
from chaotic to periodic attractors, we also observe that the
variation range of velocities becomes narrower and nar-
rower; i.e., the oscillators become largely synchronous. For
measuring how the disorder parameter k influences the syn-

FIG. 1. How the average velocity � depends on the distribution
parameter k for N=50, where � is taken at t=60T ,61T , . . . ,80T for
each k. FIG. 2. Typical evolutions of individual oscillators for N=50

where �a�, �b�, �c�, and �d� represent the cases of k=0, 15, 25, and
40, respectively.

FIG. 3. The shapes of 2T attractors on the Poincaré section t
= jT where �a� and �b� denote the case of k=15 and �c� and �d� the
case of k=25.
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chronization, we introduce the self-correlation and the cross
correlation. The self-correlation is defined as follows:

D =
1

N
�

i

Di, �3�

with

Di =

�
T0

T0+T

dt �̇i�t��̇i�t + T�

��
T0

T0+T

dt �̇i
2�t��

T0

T0+T

dt �̇i
2�t + T��1/2 , �4�

where T0 is a time after the transient process. The “solid
circles” in Fig. 5 show how D changes with k where the
average is performed over 200 different sets of the time de-
lays and the error bars show the standard deviation. It is easy
to see that D is not very sensitive to k when k�10, implying

that the small range of the distribution of delays does not
have much influence on D. After that, D becomes sensitive to
k and increases monotonously with k until k=30, indicating
the appearance of periodic patterns and that the patterns are
gradually transformed into low-periodic patterns, such as a
1T attractor. Further increase of k �for k	30� causes D to
reach unity and then remain there, indicating that the pattern
becomes strictly a 1T attractor.

Except for self-correlation, we are also interested in the
mutual synchronization among different oscillators. For mea-
suring this relationship, the cross correlation is defined as

C =
2

N�N − 1��i�j

Cij , �5�

with

Cij =

�
T0

T0+T

dt �̇i�t��̇ j�t�

��
T0

T0+T

dt �̇i
2�t��

T0

T0+T

dt �̇ j
2�t��1/2 , �6�

where Cij denotes the correlation between the ith and jth
oscillators. The solid squares in Fig. 5 show how C changes
with k. Comparing the solid circles with the solid squares in
Fig. 5 we see that curves D and C are very similar; i.e., both
increase monotonously for 10�k�30 and then remain at
unity for k	30. As the cross correlation measures the corre-
lation among the oscillators, the unity of C for k	30 means
that a significant k makes an approximate synchronization
possible although the coupling terms on each individual os-
cillator are asymmetric.

It is interesting to study how the self-correlation and cross
correlation depend on the number of oscillators. By increas-
ing N, we find that the phase transition becomes more clear;
see the open circles and open squares in Fig. 5 for D and C
with N=200, respectively. However, when N increases fur-
ther, such as N	500, we observe that for larger k, the self-
correlation D will stay around unity, but the cross correlation
C will decrease. The distance of C away from unity for k
	25 will increase with N. Thus, we infer that in the thermo-
dynamic limit, the transition to unity will be kept for the D
curve, but disappear for the C curve. We will explain it later.
On the other hand, we notice that the difference between C
and D shows a resonance for the not very large N; see the
inset in Fig. 5 for N=50, 100, and 200, respectively. The
reason can be understood from Fig. 4 where there are mul-
tiple attractors for 10
k
30. As D measures the self-
correlation, it does not depend on concrete periodic patterns
or chaos. However, D will be influenced by these multiple
attractors. For example, when the oscillator i is in period 1
and the oscillator j is in period 4, their different periods will
make it difficult for C to be close to unity, resulting in a
difference C−D. This is what we observe in the inset of Fig.
5.

III. ANALYTIC SOLUTION

For understanding the mechanism of stabilizing chaos by
uniformly distributed time delays, we now do some theoret-

FIG. 4. �Color online� Probability P of chaotic dynamics and
several regular behaviors versus the disorder parameter k in a chain
of N=50 coupled oscillators. P is determined by averaging over
200 different sets of time delays.

FIG. 5. �Color online� Correlations D and C versus k, where the
solid circles and solid squares represent the self-correlation and
cross correlation for N=50, respectively, and the open ones denote
the corresponding case of N=200, respectively. The inset shows the
distance between C and D with squares, triangles, and circles de-
noting the cases of N=50, 100, and 200, respectively. The average
is performed over 200 different sets of time delays, and the error
bars show the standard deviation.
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ical analysis on Eq. �1�. Following the analytic approach
used in Refs. �26,34�, we will formulate the general master
stability functions for the uniformly distributed time delays.
The equation is as follows:

ẋi = F�xi� + s�
j

GijH�x j�t − �ij�� , �7�

where xi is the three-dimensional dynamical variable vector

of Eq. �1� for node i with x�1�=�, x�2�= �̇, and x�3�=�t. The
uncoupled dynamics for each node is ẋi=F�xi�. H: Rm

→Rm is the coupling function, G is an N�N matrix which
determines node-to-node coupling, and they can be ex-
pressed as

G =	
− 2 1 0 ¯ 1

1 − 2 1 ¯ 0

0 1 − 2 ¯ 0

] ] ] ] ]

1 0 ¯ 1 − 2



and

H = 	0 0 0

1 0 0

0 0 0

 .

The symmetric matrix G has eigenvalues 0=�1	�2�3
 ¯ �N.

Comparing with the characteristic time of the system—
i.e., the period 2� /�—�ij ��ij 
kh� is a small quantity, and
thus Eq. �7� can be approximately written as

ẋi � F�xi� + s�
j

GijH�x j�t� − �ijẋ j�t�� . �8�

For a synchronization manifold x1=x2= ¯ =xN, the average
of Eq. �8� will be invariant. Taking the averages as

�¯= 1
��

�0
���¯�d�ij with ��=kh, we get an effective deter-

ministic equation

ẋi = F�xi� + s�
j

GijH�x j�t� − �ẋ j�t�� , �9�

where �=�� /2 and brackets are omitted for short. Letting x
be the synchronization manifold and �i be the variational
vector; then, the variational equation of the ith oscillator is

�̇i = DF�x��i + s�
j

GijDH�� j − ��̇ j� . �10�

To assess the linear stability of the synchronous state x, we
diagonalize the variational equation �10� and check that the
perturbations transverse to the synchronized manifold are
damped. Diagonalizing the matrix G by SGS−1 and letting
�= ��1 , . . . ,�N�T and ����1 , . . . ,�N�T=S�, we obtain

�̇ j = �I + s�� jDH�−1�DF + s� jDH�� j

= �DF + s� jDH − s�� jDHDF�� j , �11�

where the condition H2=0 is applied. Equation �11� is the
master stability equation.

The diffusive coupling matrix G in a circular array gives
eigenvalues of � j =−4 sin2��j /N�, with j=0, . . . ,N−1. For
j=0, we have the variational equation for the synchroniza-
tion manifold ��0=0�. All other j’s correspond to transverse
eigenvectors or transverse modes. For a specific coupling
strength s, if the j−1 variational equations with j=1, . . . ,N
−1 have negative Lyapunov exponents, the system will be
synchronized. Moreover, if all the Lyapunov exponents of
these equations, including the case of j=0, are nonpositive,
the system will be both periodic and synchronized. We cal-
culate the maximum transverse Lypunov exponent �MTLE�
for the generic variational equation

�̇ = �DF + �DH − ��DHDF�� �12�

as a function of � and � with �=s�1. Figure 6 shows the
master stability function: the MTLE in �� ,�� parameter
space, which is obtained by performing 200 different sam-
plings of the initial value of Eq. �12�. From Fig. 6 we see that
for sufficiently larger ��k�—say, �	13�10−3 or k	13—all
the MTLEs will be negative, which is approximately consis-
tent with the numerical simulations in Figs. 1 and 4.

The synchronization of coupled oscillators is determined
by the MTLE of the transverse mode, �1. The system will be
synchronized when �1 is negative and nonsynchronized
when �1 is non-negative. And the stabilization of chaotic
behavior is determined by the largest Lyapunov exponent of
the system, �0. The system is chaotic when �0	0 and non-
chaotic when �0�0. When N→�—i.e., the thermodynamic
limit—we have �1→�0→0. Therefore, MTLE becomes
non-negative and causes the synchronization among oscilla-
tors to become difficult. This is the reason why we observe
numerically that the transition to unity in C disappears for
large N.

Figure 6 also shows how the coupling strength s influ-
ences the synchronization. As �=s�1, larger s means larger
�. Hence the horizontal axis of Fig. 6 denotes the coupling
strength and its vertical axis denotes the time delay. It is easy
to see that when �=0—i.e., when there is no time delay—the
MTLE will become negative only when the coupling
strength is large enough or �s�1�	0.08. However, when � is
large enough—i.e., �	13h—the MTLE becomes negative
even when the coupling strength is very small; see the verti-

FIG. 6. �Color online� Master stability function in the �� ,��
parameter plane which is performed by 200 different samplings.
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cal axis of �=0. Therefore, we may think that the induced
synchronization is a new phenomenon when s is very small.
In general, for finite s, Fig. 6 shows that the time-delay � is
in favor of synchronization.

IV. DISCUSSIONS AND CONCLUSIONS

In the communication of real physical or biological sys-
tems, time delays in signals are unavoidable because of dif-
ferent distances or different speeds of signal transportation.
Especially, in the communication of neurons, the time delays
are most likely different because the distance between differ-
ent neurons differs. Our results suggest that the signal trans-
mission can be seriously influenced by the distributed time
delays and significant delays may result in synchronization
and therefore benefit the signal transmission. This finding

may provide further insight into information processing in
biological systems.

In conclusion, we have uncovered a phenomenon of con-
trolling chaotic dynamics with distributed time delays. This
approach is equivalent to the approach of distributed random
phases. When the parameter k is significant, the distributed
time delays can cause the system to become periodic pat-
terns. The oscillators can even become approximately syn-
chronized when k is large enough.
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